рабочая программа по геометрии 7 класс_9339


Муниципальное автономное общеобразовательное учреждение Средняя общеобразовательная школа № 1 пгт Серышево имени Сергея Бондарева

«Утверждаю»

Директор школы

______________________

«_____»_________2013 год

«Согласовано»

Зам.директора по УВР

______________________

«_____»_________2013 год

Рассмотрено на заседании Методического объеденения

Протокол № _________

«_____»_________2013 год

Рабочая учебная программа

Курса «Математики»

(геометрия)

7 А класса

2013 – 2014 учебный год

Рабочую учебную программу составила:

Роговская Екатерина Андреевна

Учитель математики

Серышево, 2013 г.

Пояснительная записка

Программа по геометрии 7 – 9 класса составлена на основе федерального компонента государственного стандарта среднего (полного) общего образования на базовом уровне. Она конкретизирует содержание предметных тем образовательного стандарта и дает примерное распределение учебных часов по разделам курса.

Математика играет важную роль в общей системе образования. Но математика в школе – не наука и даже не основа науки, а учебный предмет.

В учебном предмете, в отличие от науки, мы не обязаны все доказывать. Более того, в ряде случаев правдоподобные рассуждения или толкования, опирающиеся на графические модели, на интуицию, имеют для школьников более весомую общекультурную ценность, чем формальные доказательства.

Сложные математические понятия вводятся:

— когда у учащихся накоплен достаточный опыт для адекватного восприятия вводимого понятия – опыт, содействующий пониманию всех слов, содержащихся в определении (вербальный опыт), и опыт использования понятия на наглядно-интуитивном и рабочем уровнях (генетический опыт);

— когда у учащихся появилась потребность в формальном определении понятия.

Владение математическим языком и математическим моделированием позволяет ученику лучше ориентироваться в природе и обществе, способствует развитию речи не в меньшей степени, чем уроки русского языка и литературы. Математика – предмет, который позволяет ученику правильно ориентироваться в окружающей действительности и «ум в порядок приводит».

Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, развивает воображение, пространственные представления. История развития математического знания дает возможность пополнить запас историко-научных знаний учащихся, сформировать у них представления о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, судьбами великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.

Одной из основных задач изучения геометрии является развитие логического мышления, необходимого, в частности, для освоения курса информатики, физики, овладения навыками дедуктивных рассуждений. Преобразование геометрических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству.

Образовательные и воспитательные задачи обучения геометрии должны решаться комплексно с учетом возрастных особенностей обучающихся, специфики геометрии как учебного предмета, определяющего её роль и место в общей системе школьного обучения и воспитания. При планировании уроков следует иметь в виду, что теоретический материал осознается и усваивается преимущественно в процессе решения задач. Организуя решение задач, целесообразно шире использовать дифференцированный подход к учащимся. Важным условием правильной организации учебно-воспитательного процесса является выбор учителем рациональной системы методов и приемов обучения, сбалансированное сочетание традиционных и новых методов обучения, оптимизированное применение объяснительно-иллюстрированных и эвристических методов, использование технических средств, ИКТ -компонента. Учебный процесс необходимо ориентировать на рациональное сочетание устных и письменных видов работы, как при изучении теории, так и при решении задач. Внимание учителя должно быть направлено на развитие речи учащихся, формирование у них навыков умственного труда – планирование своей работы, поиск рациональных путей её выполнения, критическую оценку результатов.

Основные цели курса:

-овладение системой математических знаний и умений, необходимых в практической деятельности, продолжения образования;

-приобретение опыта планирования и осуществления алгоритмической деятельности;

-освоение навыков и умений проведения доказательств, обоснования выбора решений;

-приобретение умений ясного и точного изложения мыслей;

-развить пространственные представления и умения, помочь освоить основные факты и методы планиметрии;

-научить пользоваться геометрическим языком для описания предметов.

Задачи обучения:

-ввести основные геометрические понятия, научить различать их взаимное расположение;

-научить распознавать геометрические фигуры и изображать их;

-ввести понятия: теорема, доказательство, признак, свойство;

-изучить все о треугольниках (элементы, признаки равенства);

-изучить признаки параллельности прямых и научить применять их при решении задач и доказательстве теорем;

-научить решать геометрические задачи на доказательства и вычисления;

-подготовить к дальнейшему изучению геометрии в последующих классах.

Контрольные работы направлены на проверку уровня базовой подготовки учащихся, а также на дифференцированную проверку владения формально-оперативным математическим аппаратом, способность к интеграции знаний по основным темам курса.

Промежуточный контроль знаний осуществляется с помощью проверочных самостоятельных работ, электронного тестирования, практических работ.

На изучение геометрии в 7 классе отводится 2 часа в неделю 68 часов . Всего контрольных работ – 5ч.

Общая хурактеристика учебного предмета

Геометрия один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Таким образом, в ходе освоения содержания курса учащиеся получают возможность развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими фигурами и их свойствами.

На основании требований Государственного образовательного стандарта в содержании предполагается реализовать актуальные в настоящее время компетентностный, личностно ориентированный, деятельностный подходы, которые определяют задачи обучения:

Продолжить овладение системой геометрических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования.

Продолжить интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе; ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

Воспитание культуры личности, отношение к геометрии как к части общечеловеческой культуры, понимание значимости геометрии для научно-технического прогресса.

В ходе преподавания геометрии в 7 классе, работы над формированием у учащихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

овладевали приемами аналитико-синтетической деятельности при доказательстве теории и решении задач;

целенаправленно обращались к примерам из практики, что развивает умения учащихся вычленять геометрические факты, формы и отношения в предметах и явлениях действительности, использовали язык геометрии для их описания, приобретали опыт исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

ясного, точного, грамотного изложения своих мыслей в устной и письменной речи; проведения доказательных рассуждений, аргументаций, выдвижения гипотез и их обоснования; поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

В курсе геометрии 7 класса систематизируются знания обучающихся о простейших геометрических фигурах и их свойствах; вводится понятие равенства фигур; вводится понятие теоремы; вырабатывается умение доказывать равенство треугольников с помощью изученных признаков; вводится новый класс задач — на построение с помощью циркуля и линейки; вводится одно из важнейших понятий — понятие параллельных прямых; даётся первое представление об аксиомах и аксиоматическом методе в геометрии; вводится аксиома параллельных прямых; рассматриваются новые интересные и важные свойства треугольников (в данной теме доказывается одна из важнейших теорем геометрии — теорема о сумме углов треугольника. Она позволяет дать классификацию треугольников по углам (остроугольный, прямоугольный, тупоугольный), а также установить некоторые свойства и признаки равенства прямоугольных треугольников).

Курс рационально сочетает логическую строгость и геометрическую наглядность. Увеличивается теоретическая значимость изучаемого материала, расширяются внутренние логические связи курса , повышается роль дедукции, степень абстракции изучаемого материала. Учащиеся должны овладеть приемами аналитико-синтетической деятельности при доказательстве теорем и решении задач. Систематическое изучение курса позволит начать работу по формированию представлений учащихся о строении математической теории, обеспечит развитие логического мышления учащихся. Изложение материала характеризуется постоянным обращением к наглядности, использованием рисунков и чертежей на всех этапах обучения и развитием геометрической интуиции на этой основе. Целенаправленное обращение к примерам из практики развивает умения учащихся вычленять геометрические факты, формы и отношения в предметах и явлениях действительности, использовать язык геометрии для их описания.

Место предмета в базисном учебном плане

Материалы для рабочей программы составлены на основе:

федерального компонента государственного стандарта общего образования,

примерной программы по математике основного общего образования,

федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях,

с учетом требований к оснащению образовательного процесса в соответствии с содержанием наполнения учебных предметов компонента государственного стандарта общего образования,

тематического планирования учебного материала,

базисного учебного плана.

Согласно федеральному базисному учебному плану на изучение математики в 7 классе отводится 52 часа из расчета: 3 часа в неделю во II-IV четверти, в том числе 6 ч для проведения контрольных работ. При этом в ней предусмотрен резерв свободного учебного времени в объеме 6 часов для использования разнообразных форм организации учебного процесса, внедрения современных методов обучения и педагогических технологий.

Основная форма организации образовательного процесса – классно-урочная система.

Предусматривается применение следующих технологий обучения:

традиционная классно-урочная

игровые технологии

элементы проблемного обучения

технологии уровневой дифференциации

здоровьесберегающие технологии

ИКТ

Виды и формы контроля: промежуточный, предупредительный контроль; контрольные работы.

Учебно – тематический план

ТЕМА

Кол-во часов в неделю

1.

Начальные геометрические сведения.

7

2.

Треугольники

17

3.

Параллельные прямые

13

4.

Соотношение между сторонами и углами треугольника

24

5.

Повторение.

7

Итого:

68

Содержание тем учебного курса

1. Начальные геометрические сведения

Простейшие геометрические фигуры: прямая, точка, отрезок, луч, угол. Понятие равенства геометрических фигур. Сравнение отрезков и углов. Измерение отрезков, длина отрезка. Измерение углов, градусная мера угла. Смежные и вертикальные углы, их свойства. Перпендикулярные прямые.

Цель: систематизировать знания обучающихся о простейших геометрических фигурах и их свойствах; ввести понятие равенства фигур.

В данной теме вводятся основные геометрические понятия и свойства простейших геометрических фигур на основе наглядных представлений обучающихся путем обобщения очевидных или известных из курса математики I— 6 классов геометрических фактов. Понятие аксиомы на начальном этапе обучения не вводится, и сами аксиомы не формулируются в явном виде. Необходимые исходные положения, на основе которых изучаются свойства геометрических фигур, приводятся в описательной форме. Принципиальным моментом данной темы является введение понятия равенства геометрических фигур на основе наглядного понятия наложения. Определенное внимание должно уделяться практическим приложениям геометрических понятий.

2. Треугольники

Треугольник. Признаки равенства треугольников. Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника. Равнобедренный треугольник и его свойства. Задачи на построение с помощью циркуля и линейки.

Цель: ввести понятие теоремы; выработать умение доказывать равенство треугольников с помощью изученных признаков; ввести новый класс задач — на построение с помощью циркуля и линейки.

Признаки равенства треугольников являются основным рабочим аппаратом всего курса геометрии. Доказательство большей части теорем курса и также решение многих задач проводится по следующей схеме: поиск равных треугольников — обоснование их равенства с помощью какого-то признака — следствия, вытекающие из равенства треугольников.

Применение признаков равенства треугольников при решении задач дает возможность постепенно накапливать опыт проведения доказательных рассуждений. На начальном этапе изучения и применения признаков равенства треугольников целесообразно использовать задачи с готовыми чертежами.

3. Параллельные прямые

Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых.

Цель: ввести одно из важнейших понятий — понятие параллельных прямых; дать первое представление об аксиомах и аксиоматическом методе в геометрии; ввести аксиому параллельных прямых.

Признаки и свойства параллельных прямых, связанные с углами, образованными при пересечении двух прямых секущей (накрест лежащими, односторонними, соответственными), широко используются в дальнейшем при изучении четырехугольников, подобных треугольников, при решении задач, а также в курсе стереометрии.

4. Соотношения между сторонами и углами треугольника

Сумма углов треугольника. Соотношение между сторонами и углами треугольника. Неравенство треугольника. Прямоугольные треугольники, их свойства и признаки равенства. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Построение треугольника по трем элементам.

Цель: рассмотреть новые интересные и важные свойства треугольников.

В данной теме доказывается одна из важнейших теорем геометрии — теорема о сумме углов треугольника. Она позволяет дать классификацию треугольников по углам (остроугольный, прямоугольный, тупоугольный), а также установить некоторые свойства и признаки равенства прямоугольных треугольников.

Понятие расстояния между параллельными прямыми вводится на основе доказанной предварительно теоремы о том, что все точки каждой из двух параллельных прямых равноудалены от другой прямой. Это понятие играет важную роль, и частности используется в задачах на построение.

При решении задач на построение в 7 классе следует ограничиться только выполнением и описанием построения искомой фигуры. В отдельных случаях можно провести устно анализ и доказательство, а элементы исследования должны присутствовать лишь тогда, когда это оговорено условием задачи.

Повторение. Решение задач.

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 7 класса.

В результате изучения курса геометрии 7 класса обучающиеся должны:

знать/понимать

существо понятия математического доказательства; примеры доказательств;

существо понятия алгоритма; примеры алгоритмов;

как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

как потребности практики привели математическую науку к необходимости расширения понятия числа;

вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

уметь

пользоваться языком геометрии для описания предметов окружающего мира;

распознавать геометрические фигуры, различать их взаимное расположение;

изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

вычислять значения геометрических величин (длин, углов, площадей, объемов), находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический аппарат, идеи симметрии;

проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

описания реальных ситуаций на языке геометрии;

расчетов, включающих простейшие формулы;

решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.

1. Оценка письменных контрольных работ обучающихся по математике.

Ответ оценивается отметкой «5», если:

работа выполнена полностью;

в логических рассуждениях и обосновании решения нет пробелов и ошибок;

в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Отметка «1» ставится, если:

работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2.Оценка устных ответов обучающихся по математике

Ответ оценивается отметкой «5», если ученик:

полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

отвечал самостоятельно, без наводящих вопросов учителя;

возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);

имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

не раскрыто основное содержание учебного материала;

обнаружено незнание учеником большей или наиболее важной части учебного материала;

допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Отметка «1» ставится, если:

ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.

Общая классификация ошибок.

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

3.1. Грубыми считаются ошибки:

незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;



Страницы: Первая | 1 | 2 | 3 | Вперед → | Последняя | Весь текст


See also:
Яндекс.Метрика